A Two-Stage Learning Framework for Driver Lane Change Intention Inference
نویسندگان
چکیده
منابع مشابه
Inferring Driver Intent: a Case Study in Lane-change Detection
This paper introduces a robust, real-time system for detecting driver lane changes. Under the framework of a “mind-tracking architecture,” the system simulates a set of possible driver intentions and their resulting behaviors using an approximation of a rigorous and validated model of driver behavior. The system compares these simulations with a driver’s actual observed behavior, thus inferring...
متن کاملLane-Change Detection Using a Computational Driver Model
OBJECTIVE This paper introduces a robust, real-time system for detecting driver lane changes. BACKGROUND As intelligent transportation systems evolve to assist drivers in their intended behaviors, the systems have demonstrated a need for methods of inferring driver intentions and detecting intended maneuvers. METHOD Using a "model tracing" methodology, our system simulates a set of possible...
متن کاملLane Change Trajectory Model Considering the Driver Effects Based on MANFIS
The lane change maneuver is among the most popular driving behaviors. It is also the basic element of important maneuvers like overtaking maneuver. Therefore, it is chosen as the focus of this study and novel multi-input multi-output adaptive neuro-fuzzy inference system models (MANFIS) are proposed for this behavior. These models are able to simulate and predict the future behavior of a Dri...
متن کاملEstimating Driver Mandatory Lane Change Behavior on a Multi-lane Freeway
The driver gap acceptance and rejection behavior during mandatory lane changes on a multilane freeway are analyzed in this paper. Gaps are accepted or rejected based on comparison with a minimum value generally defined as the critical gaps. Critical gaps are estimated based on the accepted and rejected gaps observed in the field. Driver behavior can be classified as consistent or inconsistent o...
متن کاملA Binary Classification Framework for Two-Stage Multiple Kernel Learning
With the advent of kernel methods, automating the task of specifying a suitable kernel has become increasingly important. In this context, the Multiple Kernel Learning (MKL) problem of finding a combination of prespecified base kernels that is suitable for the task at hand has received significant attention from researchers. In this paper we show that Multiple Kernel Learning can be framed as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2021.04.204